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Abstract

A reverse receptance approach is proposed to find approximate dynamic characteristics of structures
with sub-structural deductions. The procedure is a modification of the well-known receptance method
commonly used to study vibrations of combined structures. In the paper, vibrations of circular plates with
circular central cutouts are studied analytically to illustrate the approach. Numerical results of the
frequencies and mode shapes are compared with the available exact solutions and finite element
calculations to evaluate the accuracy and the range of applicability. It is found that for a ratio of radii less
than 0.3, the errors of approximate solutions are generally less than 1%. The analytical study demonstrates
the potential of the reverse receptance concept in the engineering practice of machine design, as a simple
numerical or analytical approach to study dynamics of structures with complex geometries.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In the development of a machine component, it is often necessary to go through an iterative
process to define a suitable component geometry that satisfies both the physical need and the
performance requirement. This process can be tedious and costly. Thus, finding an expedient way
to simplify the process is of great interest to design engineers.
One of the major tasks in this process is to determine the sizes and locations of cutouts or holes

to make the components functional and compatible. Engineers need to accurately assess the
component performance changes due to these sub-structural deductions and make decisions
accordingly. For example, the oscillatory and acoustical properties being altered by a proposed
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deduction can be critical to the component response and to the overall machine performance. A
simple approach to assess the effects is to perform complete finite element analyses of the
component and perhaps its connecting parts for each proposed deduction. Clearly, such a process
can become very cost ineffective and time-consuming. Current practice usually resolves this
problem in two ways: The first is to ignore the holes and cutouts, based on the thought that their
effects are not significantly large and can be covered by the safety margins. For some components,
this seems acceptable. However, for components whose behaviors are sensitive to the boundary
conditions and geometry, the effects of deductions cannot be ignored. One example is the
vibratory characteristics of a plate or shell structural component. The natural frequencies and
associated mode shapes may change drastically due to the existence of cutouts. In these cases, the
second way, a sub-structuring deduction procedure may be introduced to modify the stiffness, or
the element mesh, around where the holes and cutouts are located. For the rest of the structure,
finite element mesh model remains unchanged.
Although various forms of sub-structuring deduction have been extensively used in the general

application of finite element and in the design process, comprehensive studies and attempts to
standardize the procedure are somewhat lacking. Designers tend to adopt procedures based on
intuition and a qualitative assessment of the accuracy. It is then the objective of the present paper
to introduce a more rational approach for the sub-structuring deduction. The basic concept
proposed in the paper is a reverse receptance. This concept in essence, is a modification of an
approximation technique in vibration known as the receptance method. It has been widely used in
industry to assess the frequencies and mode shapes of combined structures based on the known
characteristics of each component. In the present approach, the deduced sub-structure is treated
as a void or negative component, and thus is a reverse receptance.
Although a reverse receptance seems to be similar to the original added receptance, the

mathematical and physical natures of the problems are quite different. While the focus of adding a
component is to match their essential boundary conditions, it is important that the natural
boundary conditions at the free edges are satisfied when a cutout is implemented. While the
receptance method has largely been applied to assess the global behaviors of jointed components
that are of equal sizes, the sub-structuring deduction is essentially a study of the effect of
localization due to components of different sizes. Thus, before a computer algorithm can be
developed for general applications, it seems plausible first to assess the applicability and accuracy
of the reverse approach.
In this regard, a theoretical analysis of the reverse receptance approach is performed. To keep

the analysis simple, vibration of a thin circular annular plate is considered. The plate is treated as
the conjunction of two components, namely a circular plate and a circular cutout. By knowing the
properties of each circular plate, attempt is to find the approximate frequencies and mode shapes
of the annular plate. They are compared with the available analytical solutions. The objective is to
answer some important questions. What are the critical parameters when the cutout is introduced?
How would the matching of moments, shear forces, in-plane forces, displacements and slopes
affect the accuracy? How significant would the errors become as the size of cutout increases? The
dynamic analysis includes both the symmetrical and asymmetrical modes.
The published literature related to the dynamic characteristics of a plate with internal cutouts

can be found for circular, rectangular or elliptical plates with a single central hole of circular,
square or elliptical shape. For an annular plate, Raju [1], Joga-Rao and Pickett [2], Vogel and
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Skinner [3] obtained exact solutions of the frequency parameters for the nine possible
combinations of boundary conditions, that are simply supported, clamped, and free at the
outside and inside boundaries. Joga-Rao and Pickett [2] and Joga-Rao and Vijayakumar [4]
studied these cases by using Rayleigh–Ritz method to obtain approximate frequency parameters.
For the square and rectangular plates with internal cutouts, Kumai [5] used point-matching
method to obtain frequency parameters for a clamped or simply supported square plate with a
central circular hole, later, Takahashi [6] applied Rayleigh–Ritz method to solve frequency
parameters for a clamped rectangular plate with a central circular hole. Joga-Rao and Pickett [2]
applied the Rayleigh–Ritz method to find frequency parameters for a simply supported plate
and a free square plate with a central circular hole or a centrally located square hole. Gutierrez
et al. [7] investigated transverse vibration of rectangular plates elastically restrained against
rotation at the edge with a central free hole. Huang and Wang [8] applied the finite strip
method and the receptance method to obtain modal characteristics for an elliptical or a square
plate with a central elliptical hole or a symmetrically located slit. Lately, Laura et al. [9] applied
the Rayleigh–Ritz method to solve frequency parameters of an elliptical plate with a central
circular hole.
A study of the literature shows the difficulties in obtaining analytical solutions of plate

vibration. Solutions are available only for plates with a centrally located hole. Rayleigh–Ritz
approach is often used to obtain approximate solutions for non-circular shapes. For asymmetrical
plates or plates with more than one hole, or with cutouts that are not centrally located, the
Rayleigh–Ritz method also becomes difficult to apply. The main problem is to find suitable trial
functions that satisfy the free-edge boundary conditions at the cutouts, as well as the plate support
conditions. The reverse receptance approach (RRA) treats them as separate structural
components, and therefore, seems to have advantages in handling these problems. Hence, the
present paper may also be of interest to those who attempt to find analytical solutions of plate
dynamics.
In the present work, we first consider a first order RRA, employing either a force connection or

a moment connection. Then, we apply a second order RRA, employing both force and moment
connections, to calculate the modal characteristics of the annular plate with various inner radii.
The accuracy is evaluated by comparing the per cent differences in the natural frequencies
obtained using the standard finite element and the RRA. We also examine the adequacy of the
RRA in vibration cancellation within the hole area, by comparing the mode shapes.

2. Reverse receptance approach

The receptance method, first proposed by Bishop and Johnson [10], is an analytical approach
for dynamic analysis of complex structure. Soedel and Wilken [11,12], Azimi et al. [13–15],
S.C. Huang et al. [16–27], Achong [28], Huang and Soedel [29–32] have reported further
developments and a variety of applications. They combined properties of different structural
forms to obtain the global dynamic characteristics of a connected structure. In the paper by
Soedel and Soedel [33], certain structural parts were subtracted from a discretized system, for the
first time, by using the receptance approach and employing the point receptances, while in the
present work, the line receptances are used for a continuous system.
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Briefly, a point receptance is defined as the ratio of a displacement or slope response at a certain
point to a harmonic force or moment input at the same or a different point. A line receptance can
be defined and treated the same as a point receptance under the condition that the spatial
dependencies of the receptance can be eliminated. When a sub-structure is to be removed from a
major structure, a reverse receptance is introduced for the sub-structuring deduction by
subtracting the line receptances of the sub-structure from those of the major structure along the
interfacial lines. For example, an annular plate can be viewed as the case where the smaller
circular plate, the sub-structure, is deducted from the larger plate, the major structure, as
illustrated in Fig. 1. The circumference of the central hole, which is the periphery of the smaller
plate, is the interface between the sub-structure and the major one. In general, there are
displacements in three directions and slopes in two directions, together with appropriate line force
or line moment connections should be considered at the interface. However, as an approximation,
one may impose only the relevant receptances and thus simplify the analysis. For example, if only
the axisymmetric modes of lower frequencies of a circular plate are considered, the receptance due
to circumferential displacements, in-plane displacements, and circumferential slope changes may
be neglected. Only the transverse displacements and the radial slope changes need to be included.
The number of loading connections at the interface is then reduced to only two, namely, a line
force connection coupled with a line moment connection.
The displacement (or slope) amplitudes XAi (i ¼ 1� 2), as functions of harmonic force

(or moment) amplitudes FAj (j ¼ 1� 2), are

fXAig ¼ ½aij�TfFAjg; ð1Þ
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Fig. 1. Illustration of sub-structure deduction concept implemented on an annular plate. Section view shows force and

moment connections at the interface between the major structure and the deducted sub-structure.
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where the aij are the receptances of system A, the larger plate shown in Fig. 1. Similarly,

fXBpg ¼ ½bpq�
TfFBqg; ð2Þ

where bpq (p ¼ 122 and q ¼ 122) are the receptances of system B; the smaller plate to be
deducted, as shown in Fig. 1.
When the reverse receptance is applied for deducting a sub-system B from a major system A;

with no external forces (or moments) applied to the two systems, it is required that

fFAqg ¼ �fFBqg due to the force ðor momentÞ equilibrium; and

fXApg ¼ �fXBpg due to the displacement ðor slopeÞ compability:

Combining Eqs. (1) and (2), and applying above equalities gives

a11 � b11 a12 � b12
a21 � b21 a22 � b22

" #
F0

M0

( )
¼ 0; ð3Þ

where F0 is the force amplitude andM0 the moment amplitude. The system frequency equation of
the plate-deducted plate (namely, the hole) combination has then the form

ða11 � b11Þða22 � b22Þ � ða12 � b12Þða21 � b21Þ ¼ 0: ð4Þ

3. Formulation of receptances

When a circular plate is under free vibration, its equation of motion in transverse direction,
which is denoted by subscript 3, can be derived as [34]

Dr4U3ðr; yÞ � rho2U3ðr; yÞ ¼ 0; ð5Þ

where D is the flexural rigidity, r the density, h the thickness, o the forcing frequency and U3ðr; yÞ
the modal displacement function of the plate. Upon separating the variables in the modal
displacement function and solving the differential equations by taking the boundary conditions
into account, the frequency equation can be obtained.
For a clamped circular plate of radius a; the boundary conditions are: for the transverse

displacement, u3 ¼ 0; and for the radial slope, @u3=@r ¼ 0:
The frequency equation is

JnðlaÞInþ1ðlaÞ þ InðlaÞJnþ1ðlaÞ ¼ 0; ð6Þ

where la are the roots, Jn and In the Bessel functions. The modal displacement function is found
as

Ua
3mnðr; yÞ ¼ JnðlrÞ �

JnðlaÞ
InðlaÞ

InðlrÞ
� �

cos ðnyÞ: ð7Þ

For a simply supported circular plate of radius a; the boundary conditions are: for the transverse
displacement, u3 ¼ 0; and for the moment, Mrr ¼ 0:
The frequency equation is

ð1� nÞ½JnðlaÞInþ1ðlaÞ þ InðlaÞJnþ1ðlaÞ� ¼ 2ðlaÞJnðlaÞInðlaÞ; ð8Þ
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where n is the Poisson’s ratio. The modal displacement function of a simply supported circular
plate has the same form as that of a clamped plate, Eq. (7).
For a free circular plate of radius a; the boundary conditions are: for the moment,Mrr ¼ 0; and

for the shear, Vr3 ¼ 0: The frequency equation can be expressed in the form

a11a22 � a12a21 ¼ 0;

where

a11 ¼
1

a2
flað1� nÞJnþ1ðlaÞ � ½ðlaÞ2 � ð1� nÞðn2 � nÞ�JnðlaÞg; ð9Þ

a12 ¼ �
1

a2
flað1� nÞInþ1ðlaÞ � ½ðlaÞ2 þ ð1� nÞðn2 � nÞ�InðlaÞg; ð10Þ

a21 ¼
1

a3
fla½ðlaÞ2 þ n2ð1� nÞ�Jnþ1ðlaÞ � n½ðlaÞ2 þ ð1� nÞðn2 � nÞ�JnðlaÞg; ð11Þ

a22 ¼
1

a3
fla½ðlaÞ2 � n2ð1� nÞ�Inþ1ðlaÞ þ n½ðlaÞ2 � ð1� nÞðn2 � nÞ�InðlaÞg: ð12Þ

The modal displacement function of a free circular plate of radius a can be expressed as

Ua
3mn ¼ ½JnðlrÞ þ FaInðlrÞ� cos ðnyÞ; ð13Þ

where

Fa ¼ �a11=a12 ¼
lað1� nÞJnþ1ðlaÞ � ½ðlaÞ2 � ð1� nÞðn2 � nÞ�JnðlaÞ

lað1� nÞInþ1ðlaÞ � ½ðlaÞ2 þ ð1� nÞðn2 � nÞ�InðlaÞ
: ð14Þ

The natural frequencies of a circular plate are related to roots of the frequency equation by

oa
mn ¼

ðlaÞ2mn

a2

ffiffiffiffiffiffi
D

rh

s
: ð15Þ

The superscript, a; denotes a plate of radius a; while the subscript m is the number of nodal circles
and n the number of nodal diameters. The natural frequencies of a plate vary as its boundary
conditions change. If the radius of the circular plate is b instead of a; then all a’s in Eqs. (6)–(15)
should be replaced by b:

3.1. Receptances of an annular plate with the outside simply supported and the inside free

An annular plate can be regarded as a smaller circular plate, the sub-structure, subtracted from
a larger plate, the major structure. The transverse displacements and the radial slope of two
structural components are the parameters considered at the interface. Fig. 1 shows transverse
shear loading coupled with the moment loading at the interface of the major structure, of radius a,
and the deducted sub-structure, of radius b:

3.1.1. Receptances of the major structure due to transverse shear force at the interface
For the major structure, the plate of radius a; the transverse shear Fa

3 ðr; y; tÞ is defined as

Fa
3 ðx; y; tÞ ¼ �F0 cos ðpyÞdðr � r�Þejot; ð16Þ
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where F0 is the amplitude of the shear force, p=0, 1, 2,y, dðr � r�Þ a Dirac-delta function, and r�

the location of the line force. The magnitude of the forcing function, which is located at r� ¼ b on
the simply supported plate of radius a; is

FFa�
mn ¼

1

rhNa
mn

Z a

0

Z 2p

0

Ua
3mn Fa

3 r dr dy

¼
�F0b

rhNa
mn

JnðlbÞ �
JnðlaÞ
InðlaÞ

InðlbÞ
� �

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0;
ð17Þ

where the superscript a denotes the plate of radius a: The modal mass of the plate of radius a is

Na
mn ¼

Z a

0

Z 2p

0

ðUa
3mnÞ

2r dr dy

¼
Z a

0

JnðlrÞ �
JnðlaÞ
InðlaÞ

InðlrÞ
� �2

r dr
p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð18Þ

The transverse displacement of the simply supported plate due to shear force has the form

uFa
3 ðr; y; tÞ ¼

XN
m¼1

FFa�
mn Ua

3mnðr; yÞe
jot

ðoa
mnÞ

2 � o2
; ð19Þ

where the natural frequency oa
mn and the modal displacement function Ua

3mnðr; yÞ are defined by
the Eqs. (15) and (13), where the superscript a denotes the plate of radius a:
(1) The line receptance due to the displacement response of the simply supported plate of radius a

to the line force loading at the interface is found to be

a11 ¼
uFa
3 ðb; y; tÞ

Fa
3 ðb; y; tÞ

¼
XN
m¼1

b½JnðlbÞ � JnðlaÞInðlbÞ=InðlaÞ�2

rhNa
mn½ðoa

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð20Þ

(2) The line receptance due to the slope response of the simply supported plate of radius a to the
line force loading at the interface is

a21 ¼
�@uFa

3 ðb; y; tÞ=@r

Fa
3 ðb; y; tÞ

¼
XN
m¼1

½JnðlbÞ � JnðlaÞInðlbÞ=InðlaÞ�Ga
s

rhNa
mn½ðoa

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0;
ð21Þ

where

Ga
s ¼ �nJnðlbÞ þ ðlbÞJnþ1ðlbÞ þ

JnðlaÞ
InðlaÞ

½nInðlbÞ þ ðlbÞInþ1ðlbÞ�: ð22Þ

The superscript a; and the subscript s; denote the radius a and the simply supported boundary,
respectively.

3.1.2. Receptances of the major structure due to a moment loading at the interface
On the plate of radius a, a line moment Ma

r ðr; y; tÞ has the form

Ma
r ðr; y; tÞ ¼ �M0 cos ðpyÞdðr � r�Þejot: ð23Þ
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The magnitude of the line moment forcing function on the simply supported plate of radius a is

FMa�
mn ¼

1

rhNa
mn

Z a

0

Z 2p

0

Ua
3mn

1

r

@ðMa
r rÞ

@r

� �
r dr dy

¼
�M0Ga

s

rhNa
mn

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð24Þ

The displacement of the simply supported plate due to the moment loading is

uMa
3 ðr; y; tÞ ¼

XN
m¼1

FMa�
mn Ua

3mnðr; yÞe
jot:

ðoa
mnÞ

2 � o2
ð25Þ

(3) The line receptance due to the displacement response of the simply supported plate of radius a

to the line moment loading at the interface is

a12 ¼
uMa
3 ðb; y; tÞ

Ma
r ðb; y; tÞ

¼
XN
m¼1

½JnðlbÞ � JnðlaÞInðlbÞ=InðlaÞ�Ga
s

rhNa
mn½ðoa

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð26Þ

(4) The line receptance due to the slope response of the simply supported plate of radius a to the
line moment loading at the interface is

a22 ¼
�@uMa

3 ðb; y; tÞ=@r

Ma
r ðb; y; tÞ

¼
XN
m¼1

ðGa
s Þ
2=b

rhNa
mn½ðoa

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð27Þ

The receptances a12 and a21 are equal, which is as expected from the reciprocity theorem.

3.1.3. Receptances of the sub-structure due to a transverse shear force at the interface
On the sub-structure, the unconstrained plate of radius b; the line force has the form

Fb
3 ðx; y; tÞ ¼ F0 cos ðpyÞdðr � r�Þejot: ð28Þ

The magnitude of the forcing function on the free plate of radius b is

FFb�
mn ¼

F0b

rhNb
mn

½JnðlbÞ þ FbInðlbÞ�
p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0;
ð29Þ

where

Fb ¼
lbð1� nÞJnþ1ðlbÞ � ½ðlbÞ2 � ð1� nÞðn2 � nÞ�JnðlbÞ

lbð1� nÞInþ1ðlbÞ � ½ðlbÞ2 þ ð1� nÞðn2 � nÞ�InðlbÞ
ð30Þ

in which the superscript and the subscript denote the plate of radius b: The modal mass of the
plate of radius b is

Nb
mn ¼

Z b

0

½JnðlrÞ þ FbInðlrÞ�2r dr
p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð31Þ
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Table 1

Comparison of the natural frequencies calculated by FEM and RRA of the first and the second order for a simply supported–free annular plate,

where n is the number of nodal diameters; m is the number of nodal circles

n m Ri=Ro ¼ 0:10 Ri=Ro ¼ 0:20 Ri=Ro ¼ 0:30 Ri=Ro ¼ 0:40

RRA

F.C.

RRA

M.C.

RRA

F+M

[M/F]

FEM

(Hz)

RRA

F.C.

RRA

M.C.

RRA

F+M

[M/F]

FEM

(Hz)

RRA

F.C.

RRA

M.C.

RRA

F+M

[M/F]

FEM

(Hz)

RRA

F.C.

RRA

M.C.

RRA

F+M

[M/F]

FEM

(Hz)

0 0 242 235 236 [485] 240 259 213 231 [�337] 233 280 187 228 [�174] 230 306 162 233 [�101] 235

1 1523 1374 1453 [�78] 1455 1655 1243 1549 [�17] 1550 1851 1221 1828 [1.1] 1826 3767 3701 2218 [11] 2339

2 3857 3376 3697 [�20] 3697 4306 3289 4234 [1.0] 4229 7003 6874 4696 [�11] 5290 7376 6294 7025 [�4.9] 7043

1 0 685 685 684 [9.9] 684 690 689 669 [21] 670 707 696 628 [34] 633 743 697 580 [52] 593

1 2398 2397 2374 [10] 2372 2472 2416 2248 [26] 2247 2642 2553 2251 [382] 2264 2788 2140 2619 [�7.2] 2623

2 5109 5094 4992 [11] 4975 5394 4804 4879 [172] 4872 5675 4667 5638 [�1.0] 5628 5052 4906 6911 [7.9] 7259

2 0 1253 1254 1253 [�0.61] 1251 1228 1234 1227 [4.9] 1225 1216 1230 1193 [12] 1189 1234 1249 1144 [20] 1143

1 3418 3424 3418 [1.3] 3410 3381 3410 3320 [8.6] 3318 3512 3473 3207 [20] 3214 3807 3153 3359 [�300] 3354
2 6536 6556 6529 [2.6] 6508 6626 6627 6317 [12] 6311 7137 6429 6558 [�46] 6564 8723 6178 7732 [2.6] 7882

3 0 1971 1971 1971 [�1.7] 1966 1957 1959 1957 [1.3] 1952 1919 1933 1912 [6] 1910 1885 1920 1826 [11] 1836

1 4657 4658 4657 [�0.33] 4641 4585 4608 4574 [3.9] 4561 4550 4611 4371 [9.8] 4388 4792 4678 4278 [22] 4352

2 8293 8298 8293 [0.46] 8251 8159 8232 8051 [5.6] 8025 8485 8340 7873 [18] 7923 9162 7883 8856 [�4] 8859

Note: F.C. and M.C. denote force connection and moment connection, respectively. F+M denotes force plus moment connections. The values in the

square brackets are the moment to force amplitude ratios at the fictitious joint of two plates.
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The transverse displacement of the free plate of radius b due to the transverse shear force has the form

uFb
3 ðr; y; tÞ ¼

XN
m¼1

FFb�
mn Ub

3mnðr; yÞe
jot

ðob
mnÞ

2 � o2
: ð32Þ

The natural frequency ob
mn and the modal displacement function Ub

3mnðr; yÞ have the same form as
those given in Eqs. (15) and (13), except all a’s in these two equations are replaced by b:
(5) The line receptance due to the displacement response of the free plate of radius b to the line
force loading at the interface is

b11 ¼
uFb
3 ðb; y; tÞ

Fb
3 ðb; y; tÞ

¼
XN
m¼1

b½JnðlbÞ þ FbInðlbÞ�2

rhNb
mn½ðob

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð33Þ
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Fig. 2. Per cent difference between natural frequencies obtained by FEM and RRA of the first order (plot (a): modes

n0m0 to n0m2; plot (b): modes n1m0 to n1m2; plot (c): modes n2m0 to n2m2; plot (d): modes n3m0 to n3m2. Force

connection: (B) m0, (J) m1, (W) m2; moment connection: (+) m0, (� ) m1, (*) m2); and by FEM and RRA of the

second order (plot (e): modes n0m0 to n0m2; plot (f): modes n1m0 to n1m2; plot (g): modes n2m0 to n2m2; plot (h):

modes n3m0 to n3m2. (B) m0, (J) m1, (W) m2. The annular plate is simply supported outside and free inside.
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Fig. 2 (continued).

Table 2

Comparison of frequency parameters calculated by the second order RRA and the classical method (Vogel/Leissa) for a

simply supported–free annular plate

n m Frequency parameters (a simply-supported, free annular plate) l2 ¼ ½oðRoÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
� for values of Ri=Ro of

Ri=Ro ¼ 0:1 Ri=Ro ¼ 0:3

RRA (a) Leissa (b) a � b

b
� 100

RRA (a) Leissa (b) a � b

b
� 100

0 0 4.74 4.86 �2.5 4.63 4.66 �0.6
1 29.45 29.4 0.2 37.04 37.0 0.1

2 74.93 74.8 0.2 95.17 107 �11
1 0 13.86 13.9 �0.3 12.73 12.8 �0.5

1 48.12 48 0.3 45.61 45.8 �0.4
2 0 25.39 25.4 0 24.17 24.1 0.3

1 69.26 69.2 0 64.98 65.1 �0.2
3 0 39.93 40.0 �0.2 38.75 38.8 �0.1
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(6) The line receptance due to the slope response of the free plate of radius b to the line force
loading at the interface is

b21 ¼
�@uFb

3 ðb; y; tÞ=@r

Fb
3 ðb; y; tÞ

¼
XN
m¼1

½JnðlbÞ þ FbInðlbÞ�Gb
f

rhNb
mn½ðob

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð34Þ

The function Gb
f is defined as

Gb
f ¼ �nJnðlbÞ þ ðlbÞJnþ1ðlbÞ � Fb½nInðlbÞ þ ðlbÞInþ1ðlbÞ�: ð35Þ

The superscript, b; and the subscript, f ; denote the radius b and the free boundary, respectively.

3.1.4. Receptances of the sub-structure due to a moment loading at the interface

On the sub-structure, the free plate of radius b, the line moment is given as

Mb
r ðr; y; tÞ ¼ M0 cos ðpyÞdðr � r�Þejot: ð36Þ

ARTICLE IN PRESS

Fig. 3. Modes n0m1, n1m1, n2m1 and n3m1 of a simply supported, free annulus with Ri=Ro ¼ 0:2: Plots (a)–(d) show
modes obtained by RRA of the second order; plots (e)–(h) show FEM results.
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The magnitude of the line moment forcing function on the free plate of radius b is

FMb�
mn ¼

M0Gb
fe

rhNb
mn

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð37Þ

The transverse displacement of the free plate due to moment loading has the form

uMb
3 ðr; y; tÞ ¼

XN
m¼1

FMb�
mn Ub

3mnðr; yÞe
jot

ðob
mnÞ

2 � o2
: ð38Þ

(7) The line receptance due to the displacement response of the free plate of radius b to the line
moment loading at the interface is

b12 ¼
uMb
3 ðb; y; tÞ

Mb
r ðb; y; tÞ

¼
XN
m¼1

½JnðlbÞ þ FbInðlbÞ�Gb
f

rhNb
mn½ðob

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð39Þ

ARTICLE IN PRESS

Fig. 3 (continued).
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(8) The line receptance due to the slope response of the free plate of radius b to the line moment
loading at the interface is

b22 ¼
�@uMb

3 ðb; y; tÞ=@r

Mb
r ðb; y; tÞ

¼
XN
m¼1

ðGb
f Þ
2=b

rhNb
mn½ðob

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð40Þ

Again as expected, the cross receptances b12 and b21 are found to be the same due to reciprocity
theorem.
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Fig. 4. Displacements on sections (A1–A1 to A4–A4) of modes n0m1 to n3m1 a simply supported, free annular plate

with Ri=Ro ¼ 0:2: Plots (a)–(d) show results obtained by FEM (J) and RRA of the second order (� ); plots (e)–(h)
show results obtained by RRAs of the first order (force, W; moment, J) and the second order (� ).

D.T. Huang, E.C. Ting / Journal of Sound and Vibration 271 (2004) 177–207190



3.2. Receptances of an annular plate with outside free and inside clamped

For an annular plate with free boundary at the outside rim and clamped inside, the receptances of
the major structure and the deducted sub-structure can be defined in a similar way as given above.

(a) The line receptance due to the displacement response of a free plate of radius a to a line force
loading at the interface is

a11 ¼
uFa
3 ðb; y; tÞ

Fa
3 ðb; y; tÞ

¼
XN
m¼1

b½JnðlbÞ þ FaInðlbÞ�2

rhNa
mn½ðoa

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0;
ð41Þ

where Fa is defined in Eq. (14).
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Fig. 4 (continued).
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(b) The line receptance due to the slope response of a free plate of radius a to a line force loading
at the interface is

a21 ¼
�@uFa

3 ðb; y; tÞ=@r

Fa
3 ðb; y; tÞ

¼
XN
m¼1

JnðlbÞ þ FaInðlbÞ½ �Ga
f

rhNa
mn½ðoa

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð42Þ

The function Ga
f is defined as

Ga
f ¼ �nJnðlbÞ þ ðlbÞJnþ1ðlbÞ � Fa½nInðlbÞ þ ðlbÞInþ1ðlbÞ�: ð43Þ

The line receptance due to the displacement response of a free plate of radius a to a line
moment loading at the interface is denoted as a12: The cross receptance a12 is equal to a21:

(c) The line receptance due to the slope response of a free plate of radius a to a line moment
loading at the interface is

a22 ¼
�@uMa

3 ðb; y; tÞ=@r

Ma
r ðb; y; tÞ

¼
XN
m¼1

ðGa
f Þ
2=b

rhNa
mn½ðoa

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð44Þ

ARTICLE IN PRESS

Fig. 5. Variation in shape of mode n3m1 of a simply supported, free annular plate with ratio of radii varies from 0.25 to

0.4. Plots (a)–(d) show results obtained by RRA of the first order using force connection; plots (e)–(h) show that

obtained by RRA of the first order using moment connection.
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The line receptance due to the displacement response of a clamped plate of radius b to a line
force loading at the interface is denoted as b11: Since the clamped plate is constrained at r ¼ b;
the transverse displacement there is zero. So is the receptance b12; which is the line receptance
due to the displacement response of the clamped plate of radius b to a line moment loading at
the interface. Again, due to the reciprocity theorem, the cross receptance a21; which is the line
receptance due to the slope response of the clamped plate of radius b to a line force loading at
the interface, is also zero.

(d) The line receptance due to the slope response of the clamped plate of radius b to a line
moment loading at the interface is

b22 ¼
�@uMb

3 ðb; y; tÞ=@r

Mb
r ðb; y; tÞ

¼
XN
m¼1

ðGb
cÞ
2=b

rhNb
mn½ðob

mnÞ
2 � o2�

p

2p

( )
for n ¼ pa0;

for n ¼ p ¼ 0:
ð45Þ

The function Gb
c is defined as

Gb
c ¼ lb½Jnþ1ðlbÞ þ JnðlbÞInþ1ðlbÞ=InðlbÞ�: ð46Þ
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Fig. 5 (continued).
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The superscript, b; and the subscript, c; denote the radius b and the clamped boundary,
respectively.

3.3. Receptances of an annular plate with outside and inside free

If an annular plate, as is shown in Fig. 1, is free from constraint on both outside and inside, the
receptances of the major structure, a11; a21; a12 and a22; can be defined by Eqs. (41)–(44); the
receptances of the deducted sub-structure, b11; b21; b12 and b22; can be defined by Eqs. (33), (34),
(39) and (40).

4. Numerical results

Material properties of steel plates considered in the numerical examples are assumed to be:
E ¼ 20:6e+4N/mm2, r ¼ 7:85e�9N s2/mm4 and u ¼ 0:3: The dimensions are: outer radius

ARTICLE IN PRESS

Fig. 6. Variation in shape of mode n3m1 of a simply supported, free annular plate with ratio of radii varies from 0.25 to

0.4. Plots (a)–(d) show results obtained by RRA of the second order (force plus moment connections); plots (e)–(h)

show that obtained by FEM.
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a ¼ 100mm, thickness h ¼ 2mm. The inner radius b is taken as a variable. The modal
characteristics of an annular plate with simply supported–free, free–clamped and free–free
boundary conditions are calculated.

4.1. An annular plate with outside simply supported and inside free (case 1)

The receptances formulated above are substituted into the system frequency equation, Eq. (4),
to numerically evaluate natural frequencies of the combined plate components. Table 1 compares
the natural frequencies calculated by FEM and RRA of the first and the second orders of
approximation for a simply supported–free annular plate. Finite element results are computed by
using a general purpose code ANSYS. In the table, n is the number of nodal diameters, m the
number of nodal circles. The frequency results listed in Table 1 are also illustrated in Fig. 2 to
show the per cent differences between natural frequencies computed by FEM and RRA. Plots
(a)–(d) show the per cent differences for RRA of the first order, considering either a force or a
moment connection only. Plots (e)–(h) show the per cent differences for the second order,
including both the force and moment connections. From Table 1 and Fig. 2, it can be seen that
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Fig. 6 (continued).
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assuming a first order RRA, whether it is a force or a moment connection, good accuracy holds
when the ratio of radii is small, up to about 0.2–0.25. The errors, which are more sizable at the
lower order (n ¼ 0; 1) modes, become larger as the ratio of radii increases. The results can be
significantly improved by adopting a second order RRA. Good accuracy for the lower order
modes can be improved for a ratio of radii up to 0.4.
Table 2 shows comparison of frequency parameters computed by the second order RRA and

the exact solutions of the problem (Vogel [3]; Leissa [34]). It is seen that solutions obtained by the
second order RRA agree well with the close form solutions.
Substituting each system natural frequency back into the modal displacement equations and

calculating displacement responses due to force and moment loadings at each point yields the
mode shapes. The modal displacements obtained by RRA are plotted by ANSYS post-processor
and compared with ANSYS finite element results. The maximum transverse displacements of all
mode shapes are normalized to 1. In Fig. 3, plots (a)–(d) illustrate second order RRA mode
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Fig. 7. Displacements on section A4–A4 of mode n3m1 of a simply supported, free annulus with ratio of radii varies

from 0.25 to 0.4. Plots (a)–(d) show results obtained by FEM (J) and RRA of the second order (� ); plots (e)–(h) show
results obtained by RRAs of the first order (force, W; moment, J) and the second order (� ).
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shapes n0m1, n1m1, n2m1 and n3m1 of a circular plate with small circular cutouts and simply
supported–free boundary conditions. The ratio of radii is 0.2. Plots (e)–(h) illustrate finite element
mode shapes of the same problem. Comparing mode shapes displayed side by side in Fig. 3, it is
observed that the agreement is quite good.
Fig. 4 shows comparison of normalized transverse displacements of nodes on Sections A1–A1

to A4–A4 (shown also in Fig. 3) of mode shapes n0m1 to n3m1, respectively. It is seen from plots
(a)–(d) in Fig. 4, the displacement profiles generated by the second order RRA and FEM agree
very well. The transverse vibration of the central area on the circular plate is near zero due to
cancellation. In Fig. 4, plots (e)–(h) compare displacement profiles generated by first order RRAs,
either a force or a moment connection, and the second order RRA, considering both the force and
moment connections. All first order RRAs leads to larger errors. From plots (e)–(g) in Fig. 4, it is
found that vibration cancellation cannot be effectively accomplished for nodes inside the cutout
area. Errors in the displacements for nodes outside the hole are also seen.
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Fig. 7 (continued).
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Fig. 5 shows the mode n3m1 of the combined plate, as the ratio of radii increases from 0.25 to
0.40. Plots (a)–(d) display the mode shapes computed by the first order RRA with a force
connection only, while plots (e)–(h) are those computed by assuming a moment connection. Using
the first order RRA for the mode shapes, the nodal displacements of the plate around the area of
cutout cannot be cancelled completely. Residual displacement increases as the ratio of radii
increases. They can be observed in plots (d), (f), (g) and (h). From the figures, a moment
connection seems less accurate than a force connection.
Fig. 6 plots the same vibration mode of the problem as that in Fig. 5, except that a second order

RRA is now employed. Plots (a)–(d) display the mode shapes computed by the second order
RRA. Plots (e)–(f) display those computed by using ANSYS finite element code. The
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Fig. 8. Per cent difference between natural frequencies obtained by FEM and the sccond order RRA. Plots (a)–(d)

show the case of a free, clamped annulus; plots (e)–(h) show that of a free, free annulus. Plot (a): modes n0m0 to n0m2;

plot (b): modes n1m0 to n1m2; plots (c) and (g): modes n2m0 to n2m2; plots (d) and (h) modes n3m0 to n3m2; plot (e):

modes n0m1 to n0m3; plot (f): modes n1m1 to n1m3. (}) First frequency, (J) second frequency, (W) third frequency.
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displacement cancellation carried out by the second order RRA is more effective for a ratio of
radii up to 0.4. The patterns of the modes computed by RRA and FEM are in close agreement.
Plots (a)–(d) of Fig. 7 compare the transverse displacements of nodes on A4–A4 section of

mode n3m1 calculated by the second order RRA and FEM for a ratio of radii up to 0.4. Plots
(e)–(f) compare the same displacements calculated by RRA of the first and the second order.
Errors caused by the insufficient connection conditions at the interface are apparent as the ratio of
radii increases.
As a summary, if a force connection only is employed, or a RRA of the first order, the

frequencies are overestimated. If a moment connection is employed, the frequencies tend to be
underestimated. Errors become noticeable for the higher order (m^2) modes. In general, a force
connection seems more accurate than a moment connection. A first order RRA is applicable for
lower modes and for smaller radius ratios up to about 0.2. Results are significantly improved if
both connections are included. Good accuracy is obtained for radius ratios up to 0.4.
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Fig. 8 (continued).

D.T. Huang, E.C. Ting / Journal of Sound and Vibration 271 (2004) 177–207 199



4.2. An annular plate with outside free and inside clamped (case 2)

For the case of an annular plate with outside free and inside clamped, the per cent differences
between natural frequencies computed by FEM and the second order RRA are shown in plots
(a)–(d) of Fig. 8. It is seen that good accuracy can be obtained for the lower order modes (the
number of nodal diameter, n; is up to 3; number of nodal circle, m; is up to 2) with a ratio of radii
up to 0.4 or more. The mode shapes, n0m1, n1m1, n2m1 and n3m1, calculated by the second
order RRA for a free circular plate with a clamped cutout and a ratio of radii being 0.3 are shown
in plots (a)–(d) of Fig. 9. The corresponding mode shapes calculated by FEM for the same
annular plate are shown in plots (e)–(h) of Fig. 9. It can be seen that patterns of the mode shapes
generated by both approaches are nearly the same. Based on the plots of transverse displacement
contours of zero level around the cutout area, it appears that the vibration cancellation is quite
effective by using a second order RRA.
In Fig. 11, plots (a)–(d) compare normalized transverse displacements of nodes on sections

A1–A1 to A4–A4 of mode shapes n0m1 to n3m1. They correspond to the plots (a)–(d) of Fig. 9.
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Fig. 9. Modes n0m1, n1m1, n2m1 and n3m1 of a free, clamped annular plate with Ri=Ro ¼ 0:3: Plots (a)–(d) show
modes obtained by RRA of the second order; plots (e)–(h) show those obtained by FEM.
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Fig. 9 (continued).

Table 3

Comparison of frequency parameters calculated by the second order RRA and the classical method (Vogel/Leissa) for a

free–free annular plate

n m Frequency parameters (a free, free annular plate) l2 ¼ ½oðRoÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
� for values of Ri=Ro of

Ri=Ro ¼ 0:1 Ri=Ro ¼ 0:3

RRA (a) Leissa (b) a � b

b
� 100

RRA (a) Leissa (b) a � b

b
� 100

0 1 8.72 8.77 �0.57 8.29 8.36 �0.84
2 38.29 38.2 0.24 50.27 50.4 �0.26

1 1 20.40 20.5 �0.49 18.17 18.3 �0.71
2 59.27 59.0 0.46 58.62 58.8 �0.31

2 0 5.30 5.30 0.00 4.83 4.91 1.63

1 34.93 34.9 0.09 32.99 33.0 �0.03
3 0 12.44 12.4 0.32 12.29 12.26 0.24

1 52.97 53.0 �0.06 50.96 51.0 �0.08
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The displacement profiles generated by both approaches are about the same except a small
difference shown in plot (a). The displacement curves also show zero slopes at the interface.

4.3. An annular plate with outside and inside both free (case 3)

For an annular plate with outside and inside both free, the per cent differences between the
natural frequencies computed by FEM and the second order RRA are shown in plots (e)–(h)
of Fig. 8. Good accuracy is obtained for the lower order modes with a ratio of radii up to 0.4.
Table 3 shows a comparison of frequency parameters computed by the second order RRA and the
classical method (Vogel [3]; Leissa [34]) for a free–free annular plate. It is seen that good
agreement is obtained. The mode shapes, n0m1, n1m1, n2m1 and n3m1, calculated by the RRA
for a free circular plate with a free-edge cutout and a ratio of radii equal to 0.3 are shown in plots
(a)–(d) of Fig. 10. The corresponding mode shapes calculated by FEM for the same plate are
shown in plots (e)–(h) of Fig. 10. Again, the patterns show good agreement.

ARTICLE IN PRESS

Fig. 10. Modes n0m1, n1m1, n2m1 and n3m1 of a free, free annular plate with Ri=Ro ¼ 0:3: Plots (a)–(d) show modes
obtained by RRA of the second order; plots (e)–(h) show those obtained by FEM.
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In Fig. 11, plots (e)–(h) compare normalized transverse displacements of nodes on sections
A1–A1 to A4–A4 of mode shapes n0m1 to n3m1. They correspond to plots (a)–(d) of Fig. 10.
Again, the errors are quite small for the frequency range considered.

5. Conclusions

A reverse receptance approach (RRA) is proposed to obtain approximate dynamic
characteristics of structures with sub-structuring deductions. The initial motivation for the study
is to develop a simple and rational procedure to assess the changes of natural frequencies and
mode shapes, due to geometrical alternations in the design of machine components. It is
recognized that for engineering practice, this procedure should be numerical in nature, and should
consider general three-dimensional structures. However, before embarking on developing large-
scale computer algorithms, theoretical studies of the concept for the purpose of evaluating the
accuracy and applicability seem warranted. Thus, simple annular plates are chosen for the present
study, although the fundamental concept is quite general.
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Fig. 10 (continued).
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A theoretical study gives vital insights as to how a procedure based on the concept should be
carried out. For example, through the accuracy study of annular plates, it is found that the
moment and force connections should both be included if the cutouts are relatively large. For
smaller holes, a force connection, instead of a moment connection, seems to be an adequate
choice. Numerical results also provide verifications of expected results. As the frequency number
and the size of cutout increase, the approximation error increases. However, for a central hole as
large as 0.4 of the plate diameter, the second order RRA results remain within 1% difference of
the exact solution. From the theoretical, as well as the practical point of view, the accuracy and
the applicability seem to be satisfactory.
In this study, only lower frequency axisymmetric modes of the plate vibration are evaluated.

This is because receptances due to circumferential displacements, in-plane displacements, and
circumferential slope changes are neglected. For an annular plate with a small ratio of radii,
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Fig. 11. Displacements on sections (A1–A1 to A4–A4) of modes n0m1 to n3m1 of an annular plate with Ri=Ro ¼ 0:3:
The results are obtained by FEM (J) and RRA of the second order (� ). Plots (a)–(d) show the free, clamped case;
plots (e)–(h) show the free, free case.
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transverse modes dominate the vibration in the lower frequency range. It is sufficient only to
retain the receptances due to transverse shear forces and bending moments. For higher
frequencies and larger cutouts, the in-plane modes of vibration become important. To have better
accuracy, the receptances due to in-plane displacements should also be taken into account. The
analysis becomes more laborious. However, the concept and solution procedure are similar.
Analytical studies of a bending theory of plates with internal cutouts are in general difficult

and complex. The primary difficulty lies in the complexity of boundary conditions.
Classical analyses of plate equation are often based on a semi-inverse approach that requires
finding trial distribution solutions that satisfy boundary conditions. It is therefore, not
hard to find that closed form solutions are only available for limited types of plate geometry.
Even by using approximation techniques, such as a Galerkin or Ritz approach, the solution
procedures to match all the boundary conditions are still very complex. The proposed RRA
essentially treats each set of boundary conditions separately, and then combines the component
properties through a set of interaction requirements. Thus, there is considerable flexibility in
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Fig. 11 (continued).
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handling boundary conditions. Judging from the good accuracy in the numerical results,
the approach appears to have the potential as a viable alternative for obtaining analytical
solutions.
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